Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Life Sci Alliance ; 5(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1675573

ABSTRACT

Acute kidney injury is associated with mortality in COVID-19 patients. However, host cell changes underlying infection of renal cells with SARS-CoV-2 remain unknown and prevent understanding of the molecular mechanisms that may contribute to renal pathology. Here, we carried out quantitative translatome and whole-cell proteomics analyses of primary renal proximal and distal tubular epithelial cells derived from human donors infected with SARS-CoV-2 or MERS-CoV to disseminate virus and cell type-specific changes over time. Our findings revealed shared pathways modified upon infection with both viruses, as well as SARS-CoV-2-specific host cell modulation driving key changes in innate immune activation and cellular protein quality control. Notably, MERS-CoV infection-induced specific changes in mitochondrial biology that were not observed in response to SARS-CoV-2 infection. Furthermore, we identified extensive modulation in pathways associated with kidney failure that changed in a virus- and cell type-specific manner. In summary, we provide an overview of the effects of SARS-CoV-2 or MERS-CoV infection on primary renal epithelial cells revealing key pathways that may be essential for viral replication.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/virology , Kidney , Middle East Respiratory Syndrome Coronavirus/physiology , Proteome , Proteomics , SARS-CoV-2/physiology , Biomarkers , COVID-19/metabolism , COVID-19/virology , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cells, Cultured , Computational Biology/methods , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Kidney Tubules, Distal , Kidney Tubules, Proximal , Mitochondria/genetics , Mitochondria/metabolism , Primary Cell Culture , Proteomics/methods , Virus Replication
3.
PLoS One ; 16(6): e0253089, 2021.
Article in English | MEDLINE | ID: covidwho-1282298

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , COVID-19/immunology , Cell Nucleus/immunology , Interferon Regulatory Factor-3/immunology , RNA-Binding Proteins/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , Viral Nonstructural Proteins/immunology , Active Transport, Cell Nucleus/genetics , Active Transport, Cell Nucleus/immunology , Adaptor Proteins, Signal Transducing/genetics , COVID-19/genetics , Cell Nucleus/genetics , HeLa Cells , Humans , Interferon Regulatory Factor-3/genetics , NF-kappa B/genetics , NF-kappa B/immunology , Phosphorylation/genetics , Phosphorylation/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Signal Transduction/genetics , Viral Nonstructural Proteins/genetics
4.
Nature ; 595(7868): 565-571, 2021 07.
Article in English | MEDLINE | ID: covidwho-1275939

ABSTRACT

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Subject(s)
Astrocytes/pathology , Brain/pathology , COVID-19/diagnosis , COVID-19/pathology , Choroid Plexus/pathology , Microglia/pathology , Neurons/pathology , Aged , Aged, 80 and over , Brain/metabolism , Brain/physiopathology , Brain/virology , COVID-19/genetics , COVID-19/physiopathology , Cell Nucleus/genetics , Choroid Plexus/metabolism , Choroid Plexus/physiopathology , Choroid Plexus/virology , Female , Humans , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Single-Cell Analysis , Transcriptome , Virus Replication
5.
PLoS Pathog ; 17(2): e1009207, 2021 02.
Article in English | MEDLINE | ID: covidwho-1063225

ABSTRACT

The recent Coronavirus Disease 2019 pandemic has once again reminded us the importance of understanding infectious diseases. One important but understudied area in infectious disease research is the role of nuclear architecture or the physical arrangement of the genome in the nucleus in controlling gene regulation and pathogenicity. Recent advances in research methods, such as Genome-wide chromosome conformation capture using high-throughput sequencing (Hi-C), have allowed for easier analysis of nuclear architecture and chromosomal reorganization in both the infectious disease agents themselves as well as in their host cells. This review will discuss broadly on what is known about nuclear architecture in infectious disease, with an emphasis on chromosomal reorganization, and briefly discuss what steps are required next in the field.


Subject(s)
Cell Nucleus/genetics , Chromatin/metabolism , Communicable Diseases/genetics , Animals , COVID-19/genetics , COVID-19/metabolism , Cell Nucleus/metabolism , Chromatin/genetics , Chromosomes/genetics , Chromosomes/metabolism , Communicable Diseases/metabolism , Gene Expression Regulation , Humans
6.
Molecules ; 25(18)2020 Sep 04.
Article in English | MEDLINE | ID: covidwho-750656

ABSTRACT

The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Chlamydomonas reinhardtii/genetics , Coronavirus Infections/drug therapy , Lectins/pharmacology , Pneumonia, Viral/drug therapy , Polyphenols/pharmacology , Polysaccharides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Biological Products/chemistry , Biological Products/isolation & purification , COVID-19 , COVID-19 Vaccines , Cell Nucleus/chemistry , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/metabolism , Chloroplasts/chemistry , Chloroplasts/genetics , Chloroplasts/metabolism , Coronavirus Infections/prevention & control , Genetic Engineering/methods , Humans , Lectins/chemistry , Lectins/isolation & purification , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Polyphenols/chemistry , Polyphenols/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Viral Vaccines/biosynthesis , Viral Vaccines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL